Plots for Influential and Poorly Fitting Covariate Patterns in the LOGISTIC Procedure

نویسندگان

  • Mark E. Moss
  • William C. Murphy
چکیده

Logistic regression is a popular tool among epidemiologists and other data analysts and while the SAS~ system is widely used, few investigators make use of the readily available plots that assess model fit. The purpose of this presentation is to demonstrate the steps necessary to generate these plots. We provide a brief overview of logistic regression diagnostics and introduce a sample data set. Using the output statement in PROC LOGISTIC we show how to obtain the estimated logistic probabilities, change in Pearson chi-square, and Cook distance parameters so simple plots can be generated for assessing the presence of illfitting and/or influential observations. The plots provide a graphical approach for assessing model adequacy. While interpretation of the plots is somewhat subjective, these simple plots are a valuable tool for screening out inadequately fitting logistic regression models which may lead to incorrect or misleading inferences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-linear, logistic model fitting and local score statistics for cluster detection with covariate adjustments.

The standard method for p-value computation of spatial scan statistics, with adjustments for covariate effects, is to conduct Monte Carlo simulations with these effects estimated under the null hypothesis of no clustering. However when the covariates are geographically unbalanced, the proposed Monte Carlo p-value estimates are too conservative, with corresponding loss of power, due to excessive...

متن کامل

Fitting Second-order Models to Mixed Two-level and Four-level Factorial Designs: Is There an Easier Procedure?

Fitting response surface models is usually carried out using statistical packages to solve complicated equations in order to produce the estimates of the model coefficients. This paper proposes a new procedure for fitting response surface models to mixed two-level and four-level factorial designs. New and easier formulae are suggested to calculate the linear, quadratic and the interaction coeff...

متن کامل

Estimating functions for inhomogeneous spatial point processes with incomplete covariate data

The R package spatstat provides a very flexible and useful framework for analyzing spatial point patterns. A fundamental feature is a procedure for fitting spatial point process models depending on covariates. However, in practice one often faces incomplete observation of the covariates and this leads to parameter estimation error which is difficult to quantify. In this paper we introduce a Mon...

متن کامل

تحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند

Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...

متن کامل

Fitting Generalized Additive Models: A Comparison of Methods

There are several procedures for fitting generalized additive models, i.e. multivariate regression models for an exponential family response where the influence of each single covariates is assumed to have unknown, potentially non-linear shape. Simulated data is used to compare a smoothing parameter optimization approach for selection of smoothness and covariate, a stepwise approach, a mixed mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010